Copied to
clipboard

G = C3×C22⋊SD16order 192 = 26·3

Direct product of C3 and C22⋊SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C22⋊SD16, C22⋊C89C6, D4.6(C3×D4), C4.24(C6×D4), C22⋊Q81C6, D4⋊C49C6, (C2×SD16)⋊9C6, (C3×D4).40D4, (C2×C6)⋊10SD16, C2.6(C6×SD16), (C2×C24)⋊34C22, C6.97C22≀C2, (C6×SD16)⋊26C2, C12.385(C2×D4), (C2×C12).319D4, C6.86(C2×SD16), (C6×Q8)⋊26C22, (C22×D4).9C6, C223(C3×SD16), C23.48(C3×D4), C22.80(C6×D4), (C22×C6).165D4, C6.133(C8⋊C22), (C2×C12).915C23, (C6×D4).295C22, (C22×C12).422C22, C4⋊C42(C2×C6), (C2×C8)⋊6(C2×C6), (C2×Q8)⋊2(C2×C6), (D4×C2×C6).20C2, (C2×C4).28(C3×D4), C2.8(C3×C8⋊C22), (C3×C22⋊C8)⋊26C2, (C3×C4⋊C4)⋊36C22, (C2×D4).53(C2×C6), (C2×C6).636(C2×D4), (C3×C22⋊Q8)⋊28C2, (C3×D4⋊C4)⋊33C2, C2.11(C3×C22≀C2), (C22×C4).45(C2×C6), (C2×C4).90(C22×C6), SmallGroup(192,883)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C22⋊SD16
C1C2C22C2×C4C2×C12C6×Q8C6×SD16 — C3×C22⋊SD16
C1C2C2×C4 — C3×C22⋊SD16
C1C2×C6C22×C12 — C3×C22⋊SD16

Generators and relations for C3×C22⋊SD16
 G = < a,b,c,d,e | a3=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 402 in 188 conjugacy classes, 62 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C22×C6, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×C24, C3×SD16, C22×C12, C6×D4, C6×D4, C6×Q8, C23×C6, C22⋊SD16, C3×C22⋊C8, C3×D4⋊C4, C3×C22⋊Q8, C6×SD16, D4×C2×C6, C3×C22⋊SD16
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, SD16, C2×D4, C3×D4, C22×C6, C22≀C2, C2×SD16, C8⋊C22, C3×SD16, C6×D4, C22⋊SD16, C3×C22≀C2, C6×SD16, C3×C8⋊C22, C3×C22⋊SD16

Smallest permutation representation of C3×C22⋊SD16
On 48 points
Generators in S48
(1 26 43)(2 27 44)(3 28 45)(4 29 46)(5 30 47)(6 31 48)(7 32 41)(8 25 42)(9 17 36)(10 18 37)(11 19 38)(12 20 39)(13 21 40)(14 22 33)(15 23 34)(16 24 35)
(1 12)(2 6)(3 14)(4 8)(5 16)(7 10)(9 13)(11 15)(17 21)(18 32)(19 23)(20 26)(22 28)(24 30)(25 29)(27 31)(33 45)(34 38)(35 47)(36 40)(37 41)(39 43)(42 46)(44 48)
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 16)(2 11)(3 14)(4 9)(5 12)(6 15)(7 10)(8 13)(17 29)(18 32)(19 27)(20 30)(21 25)(22 28)(23 31)(24 26)(33 45)(34 48)(35 43)(36 46)(37 41)(38 44)(39 47)(40 42)

G:=sub<Sym(48)| (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,17,36)(10,18,37)(11,19,38)(12,20,39)(13,21,40)(14,22,33)(15,23,34)(16,24,35), (1,12)(2,6)(3,14)(4,8)(5,16)(7,10)(9,13)(11,15)(17,21)(18,32)(19,23)(20,26)(22,28)(24,30)(25,29)(27,31)(33,45)(34,38)(35,47)(36,40)(37,41)(39,43)(42,46)(44,48), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,11)(3,14)(4,9)(5,12)(6,15)(7,10)(8,13)(17,29)(18,32)(19,27)(20,30)(21,25)(22,28)(23,31)(24,26)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42)>;

G:=Group( (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,17,36)(10,18,37)(11,19,38)(12,20,39)(13,21,40)(14,22,33)(15,23,34)(16,24,35), (1,12)(2,6)(3,14)(4,8)(5,16)(7,10)(9,13)(11,15)(17,21)(18,32)(19,23)(20,26)(22,28)(24,30)(25,29)(27,31)(33,45)(34,38)(35,47)(36,40)(37,41)(39,43)(42,46)(44,48), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,11)(3,14)(4,9)(5,12)(6,15)(7,10)(8,13)(17,29)(18,32)(19,27)(20,30)(21,25)(22,28)(23,31)(24,26)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42) );

G=PermutationGroup([[(1,26,43),(2,27,44),(3,28,45),(4,29,46),(5,30,47),(6,31,48),(7,32,41),(8,25,42),(9,17,36),(10,18,37),(11,19,38),(12,20,39),(13,21,40),(14,22,33),(15,23,34),(16,24,35)], [(1,12),(2,6),(3,14),(4,8),(5,16),(7,10),(9,13),(11,15),(17,21),(18,32),(19,23),(20,26),(22,28),(24,30),(25,29),(27,31),(33,45),(34,38),(35,47),(36,40),(37,41),(39,43),(42,46),(44,48)], [(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,16),(2,11),(3,14),(4,9),(5,12),(6,15),(7,10),(8,13),(17,29),(18,32),(19,27),(20,30),(21,25),(22,28),(23,31),(24,26),(33,45),(34,48),(35,43),(36,46),(37,41),(38,44),(39,47),(40,42)]])

57 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C4D4E6A···6F6G6H6I6J6K···6R8A8B8C8D12A12B12C12D12E12F12G12H12I12J24A···24H
order122222222233444446···666666···688881212121212121212121224···24
size111122444411224881···122224···4444422224488884···4

57 irreducible representations

dim1111111111112222222244
type++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4SD16C3×D4C3×D4C3×D4C3×SD16C8⋊C22C3×C8⋊C22
kernelC3×C22⋊SD16C3×C22⋊C8C3×D4⋊C4C3×C22⋊Q8C6×SD16D4×C2×C6C22⋊SD16C22⋊C8D4⋊C4C22⋊Q8C2×SD16C22×D4C2×C12C3×D4C22×C6C2×C6C2×C4D4C23C22C6C2
# reps1121212242421414282812

Matrix representation of C3×C22⋊SD16 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
72000
07200
00720
0001
,
1000
0100
00720
00072
,
67600
676700
00071
00360
,
1000
07200
00720
00072
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[67,67,0,0,6,67,0,0,0,0,0,36,0,0,71,0],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72] >;

C3×C22⋊SD16 in GAP, Magma, Sage, TeX

C_3\times C_2^2\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C3xC2^2:SD16");
// GroupNames label

G:=SmallGroup(192,883);
// by ID

G=gap.SmallGroup(192,883);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094,4204,2111,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽